



## 半導体検出器の動作

- 放射線のエネルギーにより、伝導帯に電荷生成
- 励起エネルギー 数eV
- 空乏層を設ける必要がある.



様々な半導体の諸元

|                                                                         | Si   | Ge   | InSb  | GaAs  | CdTe  | $HgI_2$ |
|-------------------------------------------------------------------------|------|------|-------|-------|-------|---------|
| Ζ                                                                       | 14   | 32   | 49,51 | 31,33 | 48,52 | 80,53   |
| Band Gap (eV)                                                           | 1.11 | 0.67 | 0.17  | 1.35  | 1.44  | 2.13    |
| Density (gcm <sup>-3</sup> )                                            | 2.33 | 5.32 | 5.78  | 5.32  | 5.86  | 6.36    |
| Electron mobility<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | 1900 | 3800 | 78000 | 8800  | 1200  | 100     |
| Hole mobility<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> )     | 500  | 1820 | 750   | 400   | 50    | 10      |

## Quiz 8

- 半導体中で電子・正孔対を生成するために必要なエネ ルギーがギャップエネルギーの3倍であるとする。
   6keVのエネルギーが付与された場合について、エネル ギー分解能をSi, Ge, およびInSbについて求めよ。
   ここでは、統計精度だけでエネルギー分解能が決定される とする。
- また,光電効果が原子番号の5乗に比例するとし, figure of merit γを(光電効果)/(エネルギー分解能)とした 場合,上記3種の半導体についてγを求めよ.



- 小型, 動作電圧 ~100V
- •市販品,自作可.
- ・エネルギー分解能 良
- ・ タイミング応答 速い
- 荷電粒子測定
- Si(n,α)Mg反応で中性子測定
- X線測定の可能





pn接合における電場の強さ





$$\phi(x) = -\frac{eN_D}{2\varepsilon}(x+a)^2 + V \cdots (-a \le x \le 0)$$

$$\frac{eN_A}{2\varepsilon}(x-b)^2 \cdots (0 \le x \le b) \qquad N_D a = N_A b$$

$$x = 0 \qquad V - \frac{eN_D a^2}{2\varepsilon} = \frac{eN_A b^2}{2\varepsilon} \qquad a << b$$

$$(a+b)b = \frac{2\varepsilon V}{eN_A} \qquad d = (2\varepsilon V/eN_A)^{1/2} = (2\varepsilon V\mu\rho)^{1/2}$$

$$\rho = 1/e\mu N$$

• 実際の計算:電荷収集時間  $\tau = \rho \times 10^{-12}(s)$ 

 $d = (2\mu\tau V)^{1/2} \qquad \mu = 1500 cm^2 V^{-1} s^{-1}$ 

## Quiz 9

- 電子の速度が移動度µ<sub>e</sub>と電場の強さFとの積で与えられる。
   時刻0に位置x<sub>0</sub>に生成された電子の位置を時刻の関数として導け。
- 同様に、正孔の移動度をµhとして、正孔の位置を 求めよ。
- 電極に誘起される電荷量は、電子および正孔のそれぞれの移動距離に比例して、

$$\Delta Q_i = e \frac{\Delta x_i}{d}, (i = e, h)$$

で与えられる。Q<sub>e</sub>およびQ<sub>h</sub>を図示せよ。

エネルギー特性1 出た

## 出力波高欠損

- SSBDで重イオン測定
- 出力波高欠損
  - 入射エネルギーと波高 の比例性の劣化
- 入射窓損失
- 原子核散乱損失
- これら二つ以外の損失

- 残余損失

Replot of Wilkins et al., Nucl. Instrum. and Methods, 92 (1971) 381.





- 入射窓損失,原子核散乱損失 一定
- 空乏層の厚さに従って、一定値に近づく.



タイミング特性

プラズマディレイ1

- 初期の実験
   *t<sub>p</sub>=cE<sup>a</sup>M<sup>b</sup>/F* 電場が強い
   領域で1/F
- SSBDの比抵 抗値依存性 は無い









プラズマ柱の生成過程



高密度の電子・正孔対
 ・誘電体の性質





・ プラズマ柱内部: F<sub>in</sub>=ε/ε'・F<sub>out</sub>









・比抵抗値小→強い引付カ→小さいディレイ





- プラズマ柱の誘電率・形状の変化
- 十分な電気ポテンシャルを受けられない.

